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The behavior of weakly coupled self-sustained oscillators can often be well described by phase equations.
Here we use the paradigm of Kuramoto phase oscillators which are coupled in a network to calculate first- and
second-order corrections to the frequency of the fully synchronized state for nonidentical oscillators. The
topology of the underlying coupling network is reflected in the eigenvalues and eigenvectors of the network
Laplacian which influence the synchronization frequency in a particular way. They characterize the importance
of nodes in a network and the relations between them. Expected values for the synchronization frequency are

obtained for oscillators with quenched random frequencies on a class of scale-free random networks and for a
Erdos-Rényi random network. We briefly discuss an application of the perturbation theory in the second order

to network structural analysis.
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I. INTRODUCTION

The collective behavior of ensembles of interacting units
is one of the main topics in complex system theory. Different
parts of a complex system can be identified as subsystems
and studied individually, while the interaction between these
can lead to emergent properties of the whole system. In par-
ticular synchronization, the adjustment of internal time
scales in oscillatory systems which interact locally or
through a complex network [1,2] is ubiquitous in biological
[3-8] and technical applications [9-12]. Recently also
chemical reactions with feedback control have been pro-
posed to realize specific interaction topologies [13,14]. Syn-
chronization can orchestrate macroscopic spatiotemporal pe-
riodicity even if the individual units are very different from
each other and a simple linear superposition of their output
would be incoherent. While this is a desirable effect in many
applications, such as coupled Josephson junctions or laser
arrays [9,10] it can also lead to pathological states such as
epilepsy or Parkinson disease [4] or it can be disastrous when
it occurs in constructions [15].

The onset of synchronization for very heterogeneous sys-
tems has been described as a second-order phase transition in
the limit of large system sizes [16,17]. Above a critical cou-
pling strength or below a critical heterogeneity the incoher-
ent state becomes unstable and global collective behavior
can be observed [17-19]. For identical, possibly chaotic,
subsystems complete synchronization can be possible
[20,21]. Tt is known that the spectral properties of the cou-
pling network play an important role in the transition to syn-
chronization [2,18] and the stability of complete synchroni-
zation [20,21]. But many studies on synchronization in
networks have mainly been concerned with the estimation of
a few important eigenvalues of the network Laplacian [22].

In this paper we study the synchronization frequency in
networks of weakly nonidentical, autonomous oscillators
with attractive coupling. Under these conditions the Kura-
moto phase equations (KPE) [17] can be used to describe the
system qualitatively and quantitatively. The KPE show a rich
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collective behavior with transitions from complete desyn-
chronization, where the phases are uniformly distributed to
partial synchronization with a unimodal distribution of
phases or even clustering [17-19,23-25] and finally fre-
quency synchronization or phase locking, where the phase
difference between any two oscillators is constant.

In systems of identical phase oscillators with attractive
coupling complete synchronization is a stable solution of the
KPE. We will quantify the frequency heterogeneity of the
oscillators and derive a perturbation expansion around the
well-known synchronization manifold for identical oscilla-
tors in powers of the heterogeneity. In analogy to perturba-
tion theory for the continuous, nonlinear Kuramoto Phase
Diffusion equation [26], in Secs. IT and IIT we will show two
approaches which lead to the same first- and second-order
perturbation terms. In random networks, the expected
second-order perturbation term of the synchronization fre-
quency can be interpreted as a mean value with respect to the
spectral density of the network Laplacian. Using a random
network model for which the spectral density of the Laplac-
ian is known, we explicitly calculate the expected synchro-
nization frequency in Sec. IV. We verify out theory by nu-
merical simulations.

A. Kuramoto model

Let us briefly review the Kuramoto phase equations
(KPE) for discretely coupled oscillators [16,17]. The dynam-
ics of an ensemble of N autonomous oscillators may be given
as

N
X,=F,(X,) + 2 V,,(X,.X,), (1)

m=1

where X, defines the state of the oscillator labeled with n,
the velocity field F, allows for stable limit cycle oscillations
and V,,, describes the coupling between two oscillators de-
pending on their state. In his monograph [17] Kuramoto con-
sidered the heterogeneity in the oscillators as well as the
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coupling as a perturbation of a common oscillator dynamics
F,=F+6F,. For this common dynamics one can define a
uniformly evolving phase variable ¢ in a neighborhood of
the limit cycle. The dynamics of the phases ¢, in linear
response to the perturbation corresponds to the phase model
introduced by Winfree [3]

N
b=+ 0w,(d) + 2 L) V(b d).  (2)
m=1

Here w is the natural frequency and Z is called the phase
response function of the common oscillator dynamics. If the
phase differences change slowly over the time of one oscil-
lation then one can use phase averaging techniques [1,17] to
obtain effective phases ¥, and phase equations which only
depend on the phase differences. If we finally assume that
the functional form of the coupling between any two oscil-
lators n and m only differs in a coupling constant A,,, we
obtain the KPEs

N
1911 =w,t+ E Anmg(ﬁm - 19n) (3)

m=1

The phase coupling function g(A ) is periodic. For diffusive
coupling it vanishes at zero. We assume a positive derivative
at zero and approximate the coupling function by its lowest
Fourier modes as

g(AY) =sin A9+ y(1 —cos AD). (4)

The parameter y breaks the symmetry of the phase coupling
function and can directly be associated with the amplitude
dependence of the phase velocity in complex Stuart-Landau
oscillators [17], i.e., a third-order nonlinear effect in the nor-
mal form of a supercritical Hopf bifurcation also known as
nonisochronicity. The effect of nonisochronicity on the abil-
ity of a system to synchronize and on the formation of spa-
tiotemporal patterns has been noted early on [27] and again
stressed recently [23,28,29] whereas it is often disregarded in
favor of analytic simplicity [7,17,18].

A fully phase locked state is reached when the oscillators
can arrange their phases in a way that due to an exact balance
of nonidentical natural frequencies and coupling forces all
oscillators have the same synchronization frequency

N
Q=07+ 2 Apg(9, - 9,). (5)

m=1

The frequencies 7, in this equation are normalized to have
unit variance. Then the heterogeneity of the oscillators is
quantified by the variance var(w)=0> of the natural frequen-
cies in the system. The mean frequency @ does not necessar-
ily depend on the heterogeneity o but here we choose a
corotating frame of reference where w=o07%. For identical
oscillators (o=0) complete synchronization with identical
phases ﬂ;o)zﬁf,?) for all n and m, and synchronization fre-
quency Q=0 is a solution of Eq. (5) with

N
Q0=0=2 A,,g(d00 - 9). (6)
m=1
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B. Stability of the synchronized state

Under some weak conditions on the coupling topology
one can show that the state of complete synchronization is
stable. But it has been shown recently that in a heteroge-
neous coupling network and for large nonisochronicity 7y the
stable state of complete synchronization can coexist with a
dynamical equilibrium of complete desynchronization or par-
tial synchronization [23]. Conversely, if the nonisochronicity
is not too high and the network is well connected, complete
synchronization is the typical result from random initial con-
ditions.

A sufficient condition for the stability of complete syn-
chronization of identical oscillators is that all values A,,, are
non-negative and the corresponding weighted network is
strongly connected, i.e., there exists a path between any two
nodes. To see this, one can consider small deviations ¢, from
the synchronized solution. Linearizing Eq. (3) for =0 and
small deviations around 9’ one obtains

N N
(Pn = E Anm((Pm - ‘Pn) = 2 an‘)Dms (7)
m=1 m=1

with the network Laplacian L defined as

N
an = Anm - 5nm2 Anl‘ (8)
=1

Since all row sums X,,L,,, are zero at least one eigenvalue \
of the network Laplacian is also zero, corresponding to a
constant shift of all phases along the synchronization mani-
fold. If all values A,,, are non-negative then it follows from
the Gershgorin circle theorem that the network Laplacian has
only nonpositive eigenvalue real parts 0= Ay=Re \;=...
=Re A\y_;, where N is the number of oscillators. Complete
synchronization is unique up to a global phase shift, only if
the second largest eigenvalue real part Re A is strictly
smaller than zero.

Associated with the relaxation to synchronization is a dif-
fusion process in the opposite direction of the coupling. If all
off-diagonal elements are non-negative, the transposed La-
placian L' can be viewed as a matrix of transition rates for a

master equation P=L'P with a probability vector P. The
eigenvalue \ is nondegenerate if and only if the stationary
probability distribution Py, is unique, i.e., independent of the
initial condition. Note that a strongly connected network of
transition rates is sufficient but not necessary for that [30]. In
the following we will assume that Re A, <0 for all £>0.

II. PERTURBATION APPROACH 1

The algebraic equation [Eq. (5)] implicitly defines the
synchronization frequency and the phases in synchronization
(up to global phase shift), even for nonzero heterogeneity.
However, a stable phase locked solution of Eq. (5) or any
solution at all may not exist. Only for small heterogeneity we
can expect that a stable solution exists, which is close to the
solution for identical oscillators (0=0) and that it can be
expanded in powers of o as

9=99+ 09V + 29 + 0(d7),
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Q=00+ 20? + 0(5?). 9)

In this section we follow closely the procedure outlined in
[26] to derive the perturbation expansion of the Kuramoto
phase equations in synchronization Eq. (5). We directly in-
sert the ansatz Eq. (9) into Eq. (5), use a Taylor expansion of
the coupling function around zero and regroup the terms ac-
cording to powers of o. This procedure requires sorting of
infinite summations and some careful consideration of the
index limits. It is shown in detail in the Appendix. However,
the result takes a simple form in vector notation

Q91 =(LI? +p¥). (10)

Here QY is the ™ order perturbation term of () in Eq. (9),
the vector 9V is the corresponding perturbation term for the
phases in synchronization, 1 is a constant vector with unity
entries, the matrix L is the Laplacian of the network, as
defined in Equation Eq. (8) and b is a vector which de-
pends nonlinearly on all perturbation terms of order lower
than [ [see Egs. (14)—(16)]. Equation (10) can thus be solved
iteratively for each order of perturbation. In practice, while
the amplitude of the terms b"” is as small as O(¢?), the ana-
Iytic expression and the expense for its calculation blows up
quickly.

Let us consider a complete, orthonormal set of left and
right eigenvectors P, and p; of the network Laplacian with

Lpi=N\pe  LP=NP,
N-1
Pipe = S, X PPL=1, (11)
k=0
and in particular
po=1 and 1Py=1. (12)

The left eigenvector Py, which is the stationary solution of

the master equation P=L'P, assigns a weight to each node of
the network [31]. The solution of Eq. (10) is

QW= P(’gb(l)’

P;b"
S JLLE (13)
N
k#0 k
Using the short notations gg=g"(0), g%’ ¢"(0), and 9\
= 191(111) 1_‘)‘(1) the first three vectors b, b®, and b® are
by = 7, (14)
N
5= 3 Ao )
m=1
b = EA ( vyt —g’o"a“ ) (16)

Equations (13)—(16) give the first three perturbation terms of
the synchronization frequency and the relative phases in syn-
chronization. In the next section, we will derive the first- and
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the second-order terms again, but in a slightly different form
which allows for a better analysis.

III. PERTURBATION APPROACH 2

The second order correction Egs. (13) and (15) of the
synchronization frequency depends on the second derivative
8o=8"(0) of the phase coupling function at zero. If we are
only interested in the first- and second-order perturbation
terms we have the freedom to choose a different coupling
function g(¢) in the Eq. (5) with the same first and second
derivative at zero as g(¢) which may be more suitable for an
analysis. For the continuous Kuramoto phase diffusion equa-
tions it is known that a nonlinear Cole-Hopf transformation
®=v""1log p changes the equations in synchronization into
an eigenvalue problem of a stationary, linear Schrodinger
equation [17,26-28]. With the same procedure in mind we
will define an auxiliary coupling function g(¢) as

7o) = 17<ew— 1) =g(¢) + 0(e?). (17)

After the transformation
1
9,=—log p,, (18)
Y

we can bring equation Eq. (5) with g(¢) as coupling function
into the form of an eigenvalue problem

-Ejpp=yQp=[yoV,+L]p=-Hp, (19)

where the vector p has the entries p,, V,=diag(#) is the
diagonal matrix of frequencies and L is the network Laplac-
ian [Eq. (8)]. This equation has the form of a stationary dis-
crete Schrodinger equation for the ground state of a particle
hopping between the vertices of the coupling graph with the
on-site potentials —7, and ground-state energy Ey=—v). If
the coupling network is symmetric the Hamiltonian H is
symmetric, as well, the left and right eigenvectors are iden-
tical and all eigenvalues are real. In this section we will not
yet make this simplifying assumption.

The potential V,, of random frequencies can be treated as
a perturbation of strength yo of the eigenvalue problem for
the network Laplacian. Given the eigenvalues and orthonor-
mal left and right eigenfunctions of L. Eq. (11) we are look-
ing for the coefficients Eg) of the expansion

- Ey=\g— yoEY - YPEP - 0(y’ ). (20)

Again, we assume that the eigenvalue A\y=0 of the Laplacian
is nondegenerate, so that the ground state is unique up to
normalization. Accordingly, the synchronized state is unique
up to a constant phase shift. Schrodinger perturbation theory,
modified to allow for asymmetric operators gives the expres-
sions

~E! = (P{V,py),
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s P}V, p)(P{V,py)

_ Ef)z) -
k0 No— Ny

1)

For the first two coefficients in the perturbation expansion
Eq. (9) of the synchronization frequency () we find

V=P,

_s VORIV p).

k#0 )\k

02 =

(22)

The first term is the weighted average of the frequencies with
respect to the stationary probability distribution of the master

equation P=L'P with the transposed network Laplacian as
matrix of transition rates. In the second expression we have
used Q(z):—yEgz) and \y=0. Equation (22) is a more com-
pact form of Egs. (13)—(15) combined.

IV. EXAMPLES

We can now study the change of the synchronization fre-
quency with respect to oscillator heterogeneity and to the
architecture of the coupling network. To find expressions for
the expected first and second-order response we will consider
the ensemble of different realizations of random frequencies
and an ensemble of random networks. Let us assume inde-
pendent, identically distributed random frequencies with
[ %, 7,01 = E[ 7]>= 8,,, Then from Eq. (22) follows:

E[QM]=E,[ 7],

(23)

(P{Vp o)
B[0®]=— )’ENw[ D halla e
20 Mg

Here [, is the expected value with respect to the frequency
distribution and Ky, over the network ensemble. The vectors
P, and p, in the second equation are left and right eigenvec-
tors of the network Laplacian and \;# 0 the corresponding
eigenvalues. The operator Vl’o is diagonal with the compo-
nents of P, on the diagonal. The first-order frequency correc-
tion is independent of the network architecture while for un-
correlated frequencies the second-order perturbation term is
determined by the topology of the coupling network and the
frequency heterogeneity ¢?. For symmetric coupling A,
=A,,, the left eigenvector Py is given by N™'1 and in the limit
N— o the expected value of Q? in Eq. (24) can be written
as

Q@] =y f p(x)%dx, (24)

where p(\) is the Laplacian spectral density of the random
network ensemble.

The integral Eq. (24) has been studied in the different
context of vibrational thermodynamic stability for networks
of linear springs, modeling complex molecules [32].
Whether the integral is finite depends on the spectral dimen-
sion d of the network, defined by the limit behavior of
p(\) ~\¥>1 for A—0, a suitable generalization of the Eu-
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clidean dimension for regular lattices to geometrically disor-
dered structures [33]. For networks with spectral dimension
d>?2 larger than two, the integral in Eq. (24) is finite. In [32]
the authors study the case of a Sierpinski gasket which is a
fractal graph for which the Laplacian spectrum can be calcu-
lated analytically and the spectral dimension is lower than
two. In [26] we study regular topologies for which the Fou-
rier spectral decomposition is known and we also find the
lower critical dimension d=2. For ensembles of random
graphs in general, it is a complicated task to find analytic
expressions for the spectral density. Approximations of the
spectral density of matrices associated with complex random
networks, such as the Wigner semicircle law, are usually
only available in the limit of dense networks, where the
mean degree is much larger than one.

A. Static scale-free random network model

As an example we will use a recent result for the Laplac-
ian of a static scale-free random network model [34,35]. For
this model the coupling strength A,,,=A,,, between two 0s-
cillators is either zero or it is one with the probability
kNw,w,,, where the w, ~n~"(“=? are normalized weights for
the nodes n=1...N, and k is the mean degree of the network.
The degree distribution follows a power law with exponent
—a. In the thermodynamic limit N—oc and large k>1 the
spectral density of the Laplacian Eq. (8) is given [35] as

p(\) = {(“_ D(=N)* (=N for A<\, <O,

0 otherwise,
Ao=—k(a=2)(a-1)"". (25)
Using this spectral density in equation Eq. (24) we obtain
1 - 1)?
B[O =y f d\p(\)— = yk“lM. (26)
N ala—2)

B. Erdos-Rényi model and random tree network limit

The Erdos-Rényi random model [36] is recovered as a
special case of the static scale-free random network model in
the limit a— o0 [34]. Then for k>1 we find E[Q®]=yk".
One can study the limit of sparse uncorrelated random
graphs by removing edges randomly without breaking the
network in two components. The mean degree in a single
component, undirected graph cannot be smaller than 2(N
—1)/N for a tree network. Every edge that is removed then
breaks the connectivity, creates a new component and thus a
new zero eigenvalue of the Laplacian. We expect therefore a
divergence of the integral in Eq. (24) for k—2. We have
tested our theory numerically for symmetrically connected
random graphs with Poissonian uncorrelated degree distribu-
tions and N=400 phase oscillators with nonisochronicity y
=1.0. The frequencies were chosen randomly from a uniform
distribution with var(w)=0?=1072. The synchronization fre-
quency () was determined on one hand by solving the alge-
braic equations [Eq. (5)] with a Newton method, instead of
integrating the KPEs Eq. (3), and on the other hand by using
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FIG. 1. (Color online) Frequency shift in undirected, random
networks of size N=400 with Poissonian degree distribution and
given mean degree k. The mean degree must be larger than k=2
for an infinite random tree network. The frequency shift could be
measured precisely by enforcing a zero mean frequency w=0. Ran-
dom frequencies were drawn from a uniform distribution of stan-
dard deviation 0=10"". From an ensemble of ten realizations we
show the mean network synchronization frequency divided by vari-
ance o2 and nonisochronicity y (diamonds, Newton Method, y
=1.0), the predicted second order term (Q?) from equation Eq.
(24) and the spectrum of the network Laplacian (circles), the
asymptotic line k™! (dashed line) and the line (k—2)~! (solid line),
which describes the actual behavior of the frequency shift even for
small mean degrees close to k., =2.

our perturbation approach and the complete eigenvalue spec-
trum of the network Laplacians. The results can be seen in
Fig. 1. One can, indeed, see that the second-order perturba-
tion term diverges as (k—2)~' which is consistent with a
power law scaling E[Q®]= k! for larger mean degrees k.

C. Application to network structure analysis

In order to demonstrate possible applications of this per-
turbation theory to structural analysis of an unknown cou-
pling network let us now briefly study what information can
be gained from a measurement of linear and nonlinear re-
sponses to frequency changes of the oscillators. In [37] the
author presents a method to reconstruct a coupling network
from measuring the linear response of the phase differences
to linearly independent changes of the natural frequencies.
This corresponds to using Eq. (13). The coupling network
can be identified from the Green’s function G of the network
Laplacian and Eq. (13) reads

dV=Gy. (27)

If the phase differences are not accessible to direct measure-
ment one can in principle also obtain the Green’s function
from the second-order shift in the synchronization frequency.
For a symmetric coupling Eq. (22) gives

1
Qw)=o+ yﬁwTGw. (28)

Let {w®} be a basis set of linear independent frequency
detunings. Then the Green’s function with respect to this
basis can be determined from N(N+1)/2 measurements of
synchronization frequencies as
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1
U + 0P) - [U ') + Uw'P)] = 27Nw<“)"'Gw(B).

(29)

However, due to the number of measurements and the large
time scales of a diffusion process the application is limited to
very small networks, fast relaxation to the phase locked so-
lution and high precision measurements. The analysis can be
extended to nonidentical oscillators and asymmetric cou-

pling.
V. DISCUSSION

We have presented expressions for the first- and second-
order perturbation terms of the synchronization frequency in
complex networks of coupled Kuramoto phase oscillators
with quenched frequency disorder. The two approaches in
Secs. II and IIT give equivalent results, but the second ap-
proach, based on a nonlinear approximation of the phase
coupling function around zero, extends a well-known treat-
ment of the Kuramoto phase equations from continuous me-
dia to complex networks [17,26,27]. The results were given
in terms of the eigenvalues and eigenvectors of the Laplacian
matrix of the coupling network. In a single component with
mean degree k of a undirected Erdos-Rényi random coupling
network [36] and for oscillators with independent, identically
distributed random frequencies ®, of variance o and
nonisochronicity 7y the expected synchronization frequency
was found to be

E[Q]=E[w] + y var(w)(k—2)"" + 0(¥*07).  (30)

While the expected synchronization frequency depends to
the first order only on the natural frequencies in the system,
the second-order correction combines the nonlinearity y of
the phase coupling function around zero, the variance of the
frequencies and the mean degree of the coupling network in
a simple way.

The explicit connection between synchronization fre-
quency, natural frequencies and network structure in Eq. (22)
makes it in principle possible to infer information of either
property from a measurement or the knowledge of the other
properties. Network reconstruction by observing the linear
response to a frequency detuning has already been proposed
and successfully applied [37]. An analogous approach using
frequency measurements instead of phase differences may be
constructed based on the results of this paper.
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APPENDIX

Given the Kuramoto phase equations in synchronization
N

Q= on, t 2 Anmg(ﬁm - 19n)’

m=1

(A1)

and a phase locked solution of the KPEs for identical oscil-
lators
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N
Q0= 4,809 - 9), (A2)
m=1

we want to derive expressions for the coefficients in the ex-
pansion of the synchronization frequency () in powers of the
frequency heterogeneity o. Let us start by implicitly defining
notations for the involved perturbation terms and phase dif-
ferences

=004+ > 00 (A3)
=1
0, =0 + @, =0 + X o0, (A4)
=1
19 - 19 19 ﬁfr(t)fz + Pin = ﬁfr?z + E olﬂm (AS)
Chn= (@0 —@,) = 2 o, (A6)
I=j

=g(9), J (A7)

gmn g mn gmn gmn

Note that here we do not assume 9 =const, g(0)=0, or

(’L— gY(0). It has been pointed out, that even for identical
oscillators the homogeneous solution may not be the only
synchronized solution of the Kuramoto phase equations [38].
In certain coupling topologies and for large nonisochronicity
the completely synchronized solution can coexist with a
dominating chaotic attractor of drifting phases [23]. If the
network is homogeneous and sufficiently well connected,
however, the stable solution of complete synchronization is
typical. Therefore we assume Q¥ =g¢(0)=0 and g%: g"(0)
in the main text of this paper.

The coefficients cp,(,ﬁ;f) yield the recursion relation

/ .
ﬁfn)n for j=1,
o = 2 Gy, for j=1, (A8)
k=
0 otherwise.
Inserting Eq. (A4) into Eq. (A1) we find
N
Q = 077” + 2 Anmgmn
m=1
0) + 0-7771 + E AnmE gmn mn
m=1 j= 1.] I=j
1
A0+ gy, + 2 OJE E Anm.—gmlz e .
=1 j=1 m=1 !
(A9)
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In the second line we have inserted the unperturbed solution
Eq. (A2) and in the third line we used the expansion Eq.
(A6) of the powers of ¢,,,. Since the leading order of ¢,,, in
o is one, the jth power has a leading term of order j. In the
last line the recursion relation (A8) was used. If we now
collect the nonlinear terms (j>1) in a vector b" we can
write down this result in a more compact form

Q-00= 2 PLLEDY d( > A O, + b )

=1 m=1
(A10)

or in vector form

091 = LIV +p), (A11)

where 1 is a constant vector of unit entries, 9% is the vector
of perturbative corrections 19,(11) to the phases, and b" is a
vector which only depends on perturbation terms of order
lower than /. The matrix L is the Jacobian

N

an = Anmg:;qn - 5nm2 Anlgl’n 4 (A 1 2)
=1

or the Laplacian if g/ is a constant. The vectors b'” are
given by

bill)z My (A13)
b(2) 2 Al’[lﬂ gml‘lﬁf"ln ’ (A14)

N
5= 3 a0« Lenot). s

m=1

and in general for [>1
-1

b7 = E E A8 Oeu . (A16)

Jj=2 m=1 : k=1

Equation (41) can be solved iteratively for each perturbation
order. Let us consider a complete, orthonormal set of left and
right eigenvectors P, and p; of the Jacobian with

Lp,=\pi. L'P=N\P,
N-1
Pipyr = S kEO piPi=1, (A17)
and in particular
po=1, 1'Py=1. (A18)
We can now define the projectors
Py=poP), Qy=1-P,. (A19)
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The operation Pyx projects to a constant vector where all
entries are equal to the weighted average (x)PO and () re-
moves this average from the components of a vector. Apply-
ing these projectors to Equation Eq. (A11) we obtain

QY =pPjp?, (A20)

PHYSICAL REVIEW E 80, 026202 (2009)

0=L" +()b". (A21)

The last equation is solved for 9 up to an arbitrary global
phase shift by

Py (A22)
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